Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396625

RESUMO

The aim of this study was to investigate the effects of aerobic treadmill training regimen of four weeks duration on oxidative stress parameters, metabolic enzymes, and histomorphometric changes in the colon of hyperhomocysteinemic rats. Male Wistar albino rats were divided into four groups (n = 10, per group): C, 0.9% NaCl 0.2 mL/day subcutaneous injection (s.c.) 2x/day; H, homocysteine 0.45 µmol/g b.w./day s.c. 2x/day; CPA, saline (0.9% NaCl 0.2 mL/day s.c. 2x/day) and an aerobic treadmill training program; and HPA, homocysteine (0.45 µmol/g b.w./day s.c. 2x/day) and an aerobic treadmill training program. The HPA group had an increased level of malondialdehyde (5.568 ± 0.872 µmol/mg protein, p = 0.0128 vs. CPA (3.080 ± 0.887 µmol/mg protein)), catalase activity (3.195 ± 0.533 U/mg protein, p < 0.0001 vs. C (1.467 ± 0.501 U/mg protein), p = 0.0012 vs. H (1.955 ± 0.293 U/mg protein), and p = 0.0003 vs. CPA (1.789 ± 0.256 U/mg protein)), and total superoxide dismutase activity (9.857 ± 1.566 U/mg protein, p < 0.0001 vs. C (6.738 ± 0.339 U/mg protein), p < 0.0001 vs. H (6.015 ± 0.424 U/mg protein), and p < 0.0001 vs. CPA (5.172 ± 0.284 U/mg protein)) were detected in the rat colon. In the HPA group, higher activities of lactate dehydrogenase (2.675 ± 1.364 mU/mg protein) were detected in comparison to the CPA group (1.198 ± 0.217 mU/mg protein, p = 0.0234) and higher activities of malate dehydrogenase (9.962 (5.752-10.220) mU/mg protein) were detected in comparison to the CPA group (4.727 (4.562-5.299) mU/mg protein, p = 0.0385). Subchronic treadmill training in the rats with hyperhomocysteinemia triggers the colon tissue antioxidant response (by increasing the activities of superoxide dismutase and catalase) and elicits an increase in metabolic enzyme activities (lactate dehydrogenase and malate dehydrogenase). This study offers a comprehensive assessment of the effects of aerobic exercise on colonic tissues in a rat model of hyperhomocysteinemia, evaluating a range of biological indicators including antioxidant enzyme activity, metabolic enzyme activity, and morphometric parameters, which suggested that exercise may confer protective effects at both the physiological and morphological levels.


Assuntos
Antioxidantes , Hiper-Homocisteinemia , Ratos , Masculino , Animais , Catalase/metabolismo , Antioxidantes/farmacologia , Ratos Wistar , Malato Desidrogenase/metabolismo , Hiper-Homocisteinemia/induzido quimicamente , Hiper-Homocisteinemia/metabolismo , Solução Salina , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Homocisteína/metabolismo , Colo/metabolismo
2.
Physiol Int ; 111(1): 80-96, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38261080

RESUMO

Background: Isoprenaline (ISO), a synthetic catecholamine and a ß-adrenoceptor agonist, is widely used to develop an experimental model of myocardial injury (MI) in rats. The leading hypothesis for ISO-induced MI in rats is that it results from catecholamine overstimulation, oxidative stress, inflammatory responses, and development of cardiomyopathy during ISO administration. Folic acid (FA) reduces oxidative stress, improves endothelial function and prevents apoptosis, thereby contributing to cardiovascular protection. This study aimed to investigate the potentially protective effect of FA pretreatment on ISO-induced MI in rats. Methods: For 7 days, adult male Wistar albino rats were pretreated with 5 mg/kg/day of FA. On the sixth and seventh days, MI in rats was induced by administering 85 mg/kg/day of ISO. Prooxidant markers in plasma samples, antioxidant capacity in erythrocyte lysates, cardiac damage markers, lipid profile, electrocardiography (ECG) and histopathological analysis were evaluated. Results: FA pretreatment significantly alleviated changes induced by ISO; it decreased the homocysteine and high-sensitivity troponin I level. FA moderately decreased the reactive oxygen species (ROS) levels (superoxide anion radical, hydrogen peroxide and thiobarbituric acid reactive substances) and improved the antioxidant activities of catalase, superoxide dismutase and reduced glutathione. ISO reduced the nitrite level and FA significantly alleviated this change. Conclusion: It can be concluded that FA, as a mild antioxidant, could be an appropriate cardioprotective substance in the rat model of ISO-induced MI.


Assuntos
Antioxidantes , Infarto do Miocárdio , Ratos , Masculino , Animais , Isoproterenol/toxicidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Miocárdio/metabolismo , Ratos Wistar , Ácido Fólico/efeitos adversos , Ácido Fólico/metabolismo , Peroxidação de Lipídeos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
3.
Exp Physiol ; 108(12): 1569-1578, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37837634

RESUMO

NEW FINDINGS: What is the central question of this study? What are the biggest challenges in performing in vitro studies on isolated human umbilical arteries? What is the main finding and its importance? The protocols presented in this study indicate some potential outcomes important for interpretation of the vascular responsivities of human umbilical arteries and could be useful for planning future in vitro studies with human umbilical arteries. ABSTRACT: Human umbilical artery (HUA) preparations are of particular importance for in vitro studies on isolated blood vessels because their sampling is not risky for the patient, and they can provide the closest possible impression of changes related to the uteroplacental circulation during pre-eclampsia. Using organ bath techniques, useful experimental protocols are provided for measuring some pathophysiological phenomena in the vascular responses of HUAs. Several vasoconstrictors (serotonin, prostaglandin F and phenylephrine) and vasodilators (acetylcholine and minoxidil) were seleted for determination of their vasoactivity in HUAs. The role of L-type voltage-operated calcium channels and different types of potassium channels (KATP , BKCa and KV ) were assessed, as was the impact of homocysteine. Serotonin was confirmed to be the most potent vasoconstrictor, while acetylcholine and phenylephrine caused variability in the relaxation and contraction response of HUA, respectively. The observed increase in serotonin-induced contraction and a decrease in minoxidil-induced relaxation in the presence of homocysteine suggested its procontractile effect on HUA preparations. Using selective blockers, it was determined that KATP and KV channels participate in the minoxidil-induced relaxation, while L-type voltage-dependent Ca2+  channels play an important role in the serotonin-induced contraction. The presented protocols reveal some of the methodological challenges related to HUA preparations and indicate potential outcomes in interpreting the vascular effects of the investigated substances, both in physiological conditions and in the homocysteine-induced pre-eclampsia model.


Assuntos
Pré-Eclâmpsia , Artérias Umbilicais , Gravidez , Feminino , Humanos , Artérias Umbilicais/fisiologia , Serotonina , Acetilcolina/farmacologia , Minoxidil/farmacologia , Vasodilatação/fisiologia , Vasoconstritores/farmacologia , Fenilefrina/farmacologia , Homocisteína/farmacologia , Trifosfato de Adenosina/farmacologia
4.
Pharmaceutics ; 15(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37376144

RESUMO

Takotsubo syndrome (TTS) is an acute heart failure syndrome characterised by catecholamine-induced oxidative tissue damage. Punica granatum, a fruit-bearing tree, is known to have high polyphenolic content and has been proven to be a potent antioxidant. This study aimed to investigate the effects of pomegranate peel extract (PoPEx) pre-treatment on isoprenaline-induced takotsubo-like myocardial injury in rats. Male Wistar rats were randomised into four groups. Animals in the PoPEx(P) and PoPEx + isoprenaline group (P + I) were pre-treated for 7 days with 100 mg/kg/day of PoPEx. On the sixth and the seventh day, TTS-like syndrome was induced in rats from the isoprenaline(I) and P + I groups by administering 85 mg/kg/day of isoprenaline. PoPEx pre-treatment led to the elevation of superoxide dismutase and catalase (p < 0.05), reduced glutathione (p < 0.001) levels, decreased the thiobarbituric acid reactive substances (p < 0.001), H2O2, O2- (p < 0.05), and NO2- (p < 0.001), in the P + I group, when compared to the I group. In addition, a significant reduction in the levels of cardiac damage markers, as well as a reduction in the extent of cardiac damage, was found. In conclusion, PoPEx pre-treatment significantly attenuated the isoprenaline-induced myocardial damage, primarily via the preservation of endogenous antioxidant capacity in the rat model of takotsubo-like cardiomyopathy.

5.
Molecules ; 28(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36903540

RESUMO

The interaction of the SARS-CoV-2 spike (S) glycoprotein receptor-binding domain with the host-cell ACE2 receptor is a well-known step in virus infection. Neuropilin-1 (NRP-1) is another host factor involved in virus internalization. The interaction between S-glycoprotein and NRP-1 has been identified as a potential COVID-19 treatment target. Herein, the effectiveness of folic acid and leucovorin in preventing contact between S-glycoprotein and NRP-1 receptors was investigated using in silico studies and then confirmed in vitro. The results of a molecular docking study showed that leucovorin and folic acid had lower binding energies than EG01377, a well-known NRP-1 inhibitor, and lopinavir. Two hydrogen bonds with Asp 320 and Asn 300 residues stabilized the leucovorin, while interactions with Gly 318, Thr 349, and Tyr 353 residues stabilized the folic acid. The molecular dynamic simulation revealed that the folic acid and leucovorin created very stable complexes with the NRP-1. The in vitro studies showed that the leucovorin was the most active inhibitor of the S1-glycoprotein/NRP-1 complex formation, with an IC75 value of 185.95 µg/mL. The results of this study suggest that folic acid and leucovorin could be considered as potential inhibitors of the S-glycoprotein/NRP-1 complex and, thus, could prevent the SARS-CoV-2 virus' entry into host cells.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Simulação de Acoplamento Molecular , Leucovorina , Neuropilina-1/metabolismo , Ácido Fólico/metabolismo , Internalização do Vírus , Tratamento Farmacológico da COVID-19 , Ligação Proteica , Glicoproteínas/metabolismo
6.
Can J Physiol Pharmacol ; 101(5): 258-267, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36848640

RESUMO

Type 2 diabetes mellitus (T2DM) increases the risk of cardiovascular disease, especially myocardial injury. Due to their hypoglycemic effects, glucagon-like peptide-1 receptor agonists (GLP-1RAs) are efficiently used for T2DM management. GLP-1RAs also have anti-inflammatory and antioxidative effects and can improve cardiac function. The aim of this study was to investigate the cardioprotective effects of liraglutide, a GLP-1RA, on isoprenaline-induced myocardial injury in rats. The study included four groups of animals. They were pretreated with saline for 10 days + saline on days 9 and 10 (control), saline for 10 days + isoprenaline on days 9 and 10 (isoprenaline group), liraglutide for 10 days + saline on days 9 and 10 (liraglutide group), and liraglutide for 10 days, and on days 9 and 10 isoprenaline was administered. This study evaluated ECG, myocardial injury markers, oxidative stress markers, and pathohistological changes. The results showed that liraglutide mitigated the isoprenaline-induced cardiac dysfunction recorded by ECG. Liraglutide reduced serum markers of myocardial injury such as high-sensitive troponin I, aspartate aminotransferase, alanine aminotransferase, reduced thiobarbituric acid reactive substances, increased catalase and superoxide dismutase activity, increased reduced glutathione level, and improved lipid profile. Liraglutide induced antioxidative protection and alleviated isoprenaline-induced myocardial injury.


Assuntos
Diabetes Mellitus Tipo 2 , Traumatismos Cardíacos , Ratos , Animais , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/tratamento farmacológico , Isoproterenol/toxicidade , Hipoglicemiantes/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/prevenção & controle , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas
7.
Clin Hemorheol Microcirc ; 83(2): 137-148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36373312

RESUMO

INTRODUCTION: This study was created to analyze dynamic alterations in coagulation, hematological and biochemical parameters and their association with mortality of COVID-19 patients. To identify the most sensitive biomarkers as predictors of mortality more research is required. METHODS: The present study was a prospective, one-year-long observational study conducted on all critically ill, COVID-19 patients with respiratory failure. The following data were collected: demographic and clinical characteristics of the study population, comorbidities, coagulation, biochemical and hematological parameters. The primary outcome was the proportion of patients who died. RESULTS: 91 patients with median age 60 (50-67), 76.9% male, met the acute respiratory distress syndrome criteria. It was tested whether dynamic change (delta-Δ) of parameters that were found to be predictors of mortality is independently associated with poor outcome. Adjusted (multivariate) analysis was used, where tested parameters were corrected for basic and clinical patients characteristics. The only inflammatory parameter which dynamic change had statistically significant odds ratio was ΔCRP (p < 0.005), while among coagulation parameters statistically significant OR was found for Δ fibrinogen (p < 0.005) in predicting mortality. CONCLUSION: Monitoring of coagulation, hematological and biochemical parameters abnormalities and their dynamical changes can potentially improve management and predict mortality in critically ill COVID -19 patients.


Assuntos
COVID-19 , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Estado Terminal , Estudos Prospectivos , Coagulação Sanguínea , Biomarcadores
8.
Mol Cell Biochem ; 478(1): 161-172, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35759142

RESUMO

The aim of this study was to examine the effects of hyperhomocysteinemia and aerobic physical activity on changes of cardiovascular biomarkers in sera, oxidative stress in cardiac tissue, and histomorphometric parameters of heart and aorta in rats. Experiments were conducted on male Wistar albino rats organized into four groups (n = 10, per group): C (control group): 0.9% NaCl 0.2 mL/day; H (homocysteine group): homocysteine 0.45 µmol/g b.w./day; CPA (control + physical activity group): 0.9% NaCl 0.2 mL/day and a program of physical activity on a treadmill; and HPA (homocysteine + physical activity group) homocysteine 0.45 µmol/g b.w./day and a program of physical activity on a treadmill. Substances were applied subcutaneously twice a day. Lipid peroxidation and relative activity of Mn-superoxide dismutase isoform were significantly higher in active hyperhomocysteinemic rats in comparison to sedentary animals. Atherosclerotic plaques were detected in aorta samples of active hyperhomocysteinemic rats and also, they had increased left ventricle wall and interventricular septum, and transverse diameter of cardiomyocytes compared to sedentary groups. Aerobic physical activity in the condition of hyperhomocysteinemia can lead to increased oxidative stress in cardiac tissue and changes in histomorphometric parameters of the heart and aorta, as well increased lipid parameters and cardiac damage biomarkers in sera of rats.


Assuntos
Hiper-Homocisteinemia , Animais , Ratos , Masculino , Solução Salina/farmacologia , Ratos Wistar , Estresse Oxidativo , Aorta/metabolismo , Exercício Físico , Biomarcadores/metabolismo , Homocisteína/farmacologia
9.
Biomolecules ; 12(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35454125

RESUMO

Cardiovascular diseases are the leading cause of death and the main cause of disability. In the last decade, homocysteine has been found to be a risk factor or a marker for cardiovascular diseases, including myocardial infarction (MI) and heart failure (HF). There are indications that vitamin B6 plays a significant role in the process of transsulfuration in homocysteine metabolism, specifically, in a part of the reaction in which homocysteine transfers a sulfhydryl group to serine to form α-ketobutyrate and cysteine. Therefore, an elevated homocysteine concentration (hyperhomocysteinemia) could be a consequence of vitamin B6 and/or folate deficiency. Hyperhomocysteinemia in turn could damage the endothelium and the blood vessel wall and induce worsening of atherosclerotic process, having a negative impact on the mechanisms underlying MI and HF, such as oxidative stress, inflammation, and altered function of gasotransmitters. Given the importance of the vitamin B6 in homocysteine metabolism, in this paper, we review its role in reducing oxidative stress and inflammation, influencing the functions of gasotransmitters, and improving vasodilatation and coronary flow in animal models of MI and HF.


Assuntos
Gasotransmissores , Insuficiência Cardíaca , Hiper-Homocisteinemia , Infarto do Miocárdio , Animais , Ácido Fólico , Insuficiência Cardíaca/complicações , Homocisteína , Hiper-Homocisteinemia/etiologia , Inflamação/complicações , Modelos Teóricos , Vitamina B 6 , Vitaminas
11.
Rev Cardiovasc Med ; 23(2): 57, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35229548

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is commonly associated with hyperglycemia, dyslipidemia, oxidative stress and inflammation which are well known cardiovascular risk factors. Pomegranate peel polyphenols have a proven hypolipemic, antioxidant and anti-inflammatory activity. However, there is a lack of clinical studies that would confirm its antioxidant and anti-inflammatory effects in diabetic patients. The potential of pomegranate peel extract (PoPEx) to counteract inflammation and oxidative stress in T2DM patients was investigated. For this purpose, a randomized, double-blind placebo-controlled study involving adult T2DM patients treated with PoPEx or placebo for eight-weeks was conducted. METHODS: Patients were randomly divided into two groups: the first group (n = 30) received capsules containing PoPEx 250 mg twice daily, while the placebo group (n = 30) received placebo capsules twice daily. Plasma concentration of inflammatory factors (interleukin 6 (IL-6), tumor necrosis factor α (TNF-α) and high sensitivity C reactive protein (hsCRP)), oxidative stress biomarkers (thiobarbituric acid reactive substances (TBARS), nitrites (NO2-), superoxide anion radical (O2-), hydrogen peroxide (H2O2), total antioxidant capacity (TAC)), homocysteine and lipid profile were analyzed. RESULTS: The PoPEx treatment showed a significant reduction of inflammatory factors (IL-6, TNF-α, hsCRP), oxidative stress biomarkers (TBARS, NO2-, O2-) and homocysteine, while the TAC was increased. Moreover, a significant improvement in lipid profile was observed in the PoPEx group. Additional analysis showed a significant inverse correlation between the decrements of all measured inflammatory markers and TAC in the PoPEx group. CONCLUSIONS: The study demonstrated that eight-week-long PoPEx administration had favorable effects on inflammatory status and oxidative stress biomarkers in diabetic patients.


Assuntos
Diabetes Mellitus Tipo 2 , Polifenóis , Adulto , Biomarcadores , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Suplementos Nutricionais , Humanos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/uso terapêutico , Estresse Oxidativo , Polifenóis/efeitos adversos , Estudos Prospectivos
12.
Biomolecules ; 11(12)2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34944509

RESUMO

Psoriasis is an autoimmune and inflammatory skin disease. Psoriatic patients express higher levels of plasma homocysteine (Hcy) concentration and pro-inflammatory mediators than healthy people; this is frequently associated with vitamin D deficiency. The aim of this clinical study was to investigate the effects of high doses of vitamin D supplementation on the parameters of Hcy metabolism and cytokines in sera of psoriatic patients. This prospective study was conducted on 40 psoriatic patients who had the vitamin D deficiency. All patients received vitamin D 5000 IU/day for three months. Clinical and biochemical measurements were taken at baseline and at follow up (3 months). The results showed that the severity of clinical features, measured by the psoriasis area severity index (PASI) score, were considerably improved in patients after vitamin D supplementation. After vitamin D supplementation, most of the patients (n = 25 or 62.5%) had mild clinical form (p < 0.001). After twelve weeks of intervention period, there were significant increases in vitamin D and B12 serum levels in comparison to the levels that had been measured at the beginning of the study (56.77 ± 14.66 nmol/L and 301.08 ± 95.02 pg/mL vs. 103.85 ± 32.20 nmol/L and 362.81 ± 118.56 pg/mL, respectively; p < 0.001). Moreover, serum levels of Hcy and folate were significantly lower at the end of the study in comparison with the initial levels (12.45 ± 1.92 µmol/L and 8.01 ± 3.88 mg/mL vs. 10.38 ± 1.66 µmol/L and 6.27 ± 2.60 mg/mL, respectively). High doses of vitamin D supplementation led to a significant decrease in pro-inflammatory cytokines (IFN-ɤ, TNF-α, IL-1ß, IL-6, IL-8, and IL-17) and high-sensitivity C-reactive protein (hsCRP), whereas the production of anti-inflammatory cytokines (IL-10, IL-5) was up-regulated. In conclusion, supplementation with high doses of vitamin D could be one of the possible preventive and therapeutic measures to reduce systemic inflammation in psoriatic patients.


Assuntos
Citocinas/sangue , Homocisteína/sangue , Psoríase/tratamento farmacológico , Deficiência de Vitamina D/tratamento farmacológico , Vitamina D/administração & dosagem , Adulto , Idoso , Biomarcadores/sangue , Citocinas/efeitos dos fármacos , Suplementos Nutricionais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Homocisteína/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Gravidade do Paciente , Estudos Prospectivos , Psoríase/sangue , Vitamina B 12/sangue , Vitamina D/farmacologia , Deficiência de Vitamina D/sangue
13.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202757

RESUMO

The aim of this study was to investigate the effect of the application of homocysteine as well as its effect under the condition of aerobic physical activity on the activities of matrix metalloproteinases (MMP), lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) in cardiac tissue and on hepato-renal biochemical parameters in sera of rats. Male Wistar albino rats were divided into four groups (n = 10, per group): C: 0.9% NaCl 0.2 mL/day subcutaneous injection (s.c.); H: homocysteine 0.45 µmol/g b.w./day s.c.; CPA saline (0.9% NaCl 0.2 mL/day s.c.) and a program of physical activity on a treadmill; and HPA homocysteine (0.45 µmol/g b.w./day s.c.) and a program of physical activity on a treadmill. Subcutaneous injection of substances was applied 2 times a day at intervals of 8 h during the first two weeks of experimental protocol. Hcy level in serum was significantly higher in the HPA group compared to the CPA group (p < 0.05). Levels of glucose, proteins, albumin, and hepatorenal biomarkers were higher in active groups compared with the sedentary group. It was demonstrated that the increased activities of LDH (mainly caused by higher activity of isoform LDH2) and mMDH were found under the condition of homocysteine-treated rats plus aerobic physical activity. Independent application of homocysteine did not lead to these changes. Physical activity leads to activation of MMP-2 isoform and to increased activity of MMP-9 isoform in both homocysteine-treated and control rats.


Assuntos
Hiper-Homocisteinemia/metabolismo , Rim/metabolismo , L-Lactato Desidrogenase/metabolismo , Fígado/metabolismo , Malato Desidrogenase/metabolismo , Metaloproteinases da Matriz/metabolismo , Miocárdio/metabolismo , Condicionamento Físico Animal , Animais , Biomarcadores , Pesos e Medidas Corporais , Ativação Enzimática , Hiper-Homocisteinemia/etiologia , Miocárdio/enzimologia , Especificidade de Órgãos , Ratos , Fatores de Tempo
14.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799869

RESUMO

The possible cardioprotective effects of translocator protein (TSPO) modulation with its ligand 4'-Chlorodiazepam (4'-ClDzp) in isoprenaline (ISO)-induced rat myocardial infarction (MI) were evaluated, alone or in the presence of L-NAME. Wistar albino male rats (b.w. 200-250 g, age 6-8 weeks) were divided into 4 groups (10 per group, total number N = 40), and certain substances were applied: 1. ISO 85 mg/kg b.w. (twice), 2. ISO 85 mg/kg b.w. (twice) + L-NAME 50 mg/kg b.w., 3. ISO 85 mg/kg b.w. (twice) + 4'-ClDzp 0.5 mg/kg b.w., 4. ISO 85 mg/kg b.w. (twice) + 4'-ClDzp 0.5 mg/kg b.w. + L-NAME 50 mg/kg b.w. Blood and cardiac tissue were sampled for myocardial injury and other biochemical markers, cardiac oxidative stress, and for histopathological evaluation. The reduction of serum levels of high-sensitive cardiac troponin T hs cTnT and tumor necrosis factor alpha (TNF-α), then significantly decreased levels of serum homocysteine Hcy, urea, and creatinine, and decreased levels of myocardial injury enzymes activities superoxide dismutase (SOD) and glutathione peroxidase (GPx) as well as lower grades of cardiac ischemic changes were demonstrated in ISO-induced MI treated with 4'-ClDzp. It has been detected that co-treatment with 4'-ClDzp + L-NAME changed the number of registered parameters in comparison to 4'-ClDzp group, indicating that NO (nitric oxide) should be important in the effects of 4'-ClDzp.


Assuntos
Benzodiazepinonas/farmacologia , Proteínas de Transporte/metabolismo , Infarto do Miocárdio/prevenção & controle , NG-Nitroarginina Metil Éster/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Inibidores Enzimáticos/farmacologia , Glutationa Peroxidase/metabolismo , Homocisteína/sangue , Isoproterenol , Masculino , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/metabolismo , Miocárdio/enzimologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Ratos Wistar , Superóxido Dismutase/metabolismo , Troponina T/sangue , Fator de Necrose Tumoral alfa/sangue
15.
Mol Cell Biochem ; 476(2): 1179-1193, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33200379

RESUMO

The search for effective coronavirus disease (COVID-19) therapy has attracted a great deal of scientific interest due to its unprecedented health care system overload worldwide. We have carried out a study to investigate the in silico effects of the most abundant pomegranate peel extract constituents on the multi-step process of serious acute respiratory syndrome coronavirus 2 (SARS-CoV-2) internalization in the host cells. Binding affinities and interactions of ellagic acid, gallic acid, punicalagin and punicalin were studied on four selected protein targets with a significant and confirmed role in the process of the entry of virus into a host cell. The protein targets used in this study were: SARS-CoV-2 spike glycoprotein, angiotensin-converting enzyme 2, furin and transmembrane serine protease 2. The results showed that the constituents of pomegranate peel extracts, namely punicalagin and punicalin had very promising potential for significant interactions with the selected protein targets and were therefore deemed good candidates for further in vitro and in vivo evaluation.


Assuntos
Tratamento Farmacológico da COVID-19 , Extratos Vegetais/química , Polifenóis/química , Punica granatum/química , COVID-19/virologia , Biologia Computacional , Humanos , Extratos Vegetais/uso terapêutico , Polifenóis/uso terapêutico , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos/efeitos dos fármacos , SARS-CoV-2/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/química , Internalização do Vírus/efeitos dos fármacos
17.
Biomolecules ; 10(7)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708792

RESUMO

As well as the most known role of N-methyl-D-aspartate receptors (NMDARs) in the nervous system, there is a plethora of evidence that NMDARs are also present in the cardiovascular system where they participate in various physiological processes, as well as pathological conditions. The aim of this study was to assess the effects of preconditioning and postconditioning of isolated rat heart with NMDAR agonists and antagonists on heart function and release of oxidative stress biomarkers. The hearts of male Wistar albino rats were subjected to global ischemia for 20 min, followed by 30 min of reperfusion, using the Langendorff technique, and cardiodynamic parameters were determined during the subsequent preconditioning with the NMDAR agonists glutamate (100 µmol/L) and (RS)-(Tetrazol-5-yl)glycine (5 µmol/L) and the NMDAR antagonists memantine (100 µmol/L) and MK-801 (30 µmol/L). In the postconditioning group, the hearts were perfused with the same dose of drugs during the first 3 min of reperfusion. The oxidative stress biomarkers were determined spectrophotometrically in samples of coronary venous effluent. The NMDAR antagonists, especially MK-801, applied in postconditioning had a marked antioxidative effect with a most pronounced protective effect. The results from this study suggest that NMDARs could be a potential therapeutic target in the prevention and treatment of ischemic and reperfusion injury of the heart.


Assuntos
Coração/fisiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Estresse Oxidativo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Coração/efeitos dos fármacos , Masculino , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
18.
Mol Cell Biochem ; 472(1-2): 135-144, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32564295

RESUMO

The aim of this study was to estimate the effects of natural low mineral water from the source "Sneznik-1/79" in Serbia on glycemia as well as heart function in rats with diabetes mellitus type 2 (T2DM), with the special emphasis on the role of the oxidative stress. Twenty Wistar albino rats (males, 4 weeks old at the beginning of the study, body weight 180 ± 20 g) were included in the study. Rats were divided randomly into 2 groups (10 animals per group): T2DM: rats with diabetes mellitus type 2 with free access to tap water; T2DM + SW: rats with diabetes mellitus type with free access to natural mineral water from "Sneznik-1/79". Glucose level, ex vivo cardiac function as well as systemic and cardiac redox state were assessed. At the end of the study protocol, glucose level was lower in diabetic rats who consumed mineral water. Moreover cardiac function wasn't affected by mineral water intake, however, significant antioxidant effects were observed. Our study suggests that 4-week consumption of low mineral water from the spring "Sneznik-1/79" has important role in regulation of glycemia and altering redox state in favor of elevated antioxidant capacity without affecting heart function. Based on our findings we may assume that low mineral water from the spring "Sneznik-1/79" has the potential to be used either as preventive strategy or as additional therapeutic strategy in management of T2DM.


Assuntos
Antioxidantes/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose/metabolismo , Coração/fisiopatologia , Águas Minerais/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Coração/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar
19.
Can J Physiol Pharmacol ; 98(10): 708-716, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32353247

RESUMO

Heart failure (HF) is one of the major cardiovascular causes of death worldwide. In this study, we explored the effects of folic acid (FA) on cardiometabolic, oxidative stress biomarker changes, and the activity of proliferation marker Ki67 in monocrotaline-induced HF. The research was conducted during a 4 week period using five experimental groups (eight animals per group): blank solution exposed controls (C1: 1 mL/kg physiological saline, 1 day; C2: 1 mL/kg physiological saline, 28 days), monocrotaline (MCT) induced HF (50 mg/kg MCT), FA (5 mg·kg-1·day-1 FA), and MCT+FA (50 mg/kg MCT, 5 mg·kg-1·day-1 FA). Superoxide dismutase and glutathione peroxidase activities together with total glutathione and parameters of oxidative damage of proteins were determined in cardiac tissue as well as cardiometabolic parameters in plasma or serum. The total glutathionylation was determined by Western blot and proliferation marker Ki67 was assessed by immunohistochemistry. The right ventricular (RV) wall hypertrophy and Ki67 positivity, accompanied by a significant increase of troponin T, has been shown in MCT-induced HF. The antioxidant effect of FA was reflected through superoxide dismutase activity, reduced Ki67 positivity in the RV wall, and a slightly decreased total glutathionylation level.


Assuntos
Antioxidantes/farmacologia , Metabolismo Energético/efeitos dos fármacos , Ácido Fólico/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Glutationa/metabolismo , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Masculino , Monocrotalina , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos Wistar , Remodelação Ventricular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...